Leader Election in Rings

- Under different models:
 - Synchronous vs. asynchronous
 - Anonymous vs. non-anonymous (knowledge of unique id)
 - Knowledge of “n” (non-uniform) vs. no knowledge (uniform)

- Impossibility result: there is no synchronous, non-uniform algorithm if the processors are anonymous.
 - Implies that there are no uniform algorithms as well
 - Implies that there are no asynchronous algorithms as well
Outline

- Leader election in asynchronous rings:
 - An \(O(n^2) \) messages algorithm
 - An \(O(n \log n) \) messages algorithm
- Brief mention of a lower bound
- Synchronous model:
 - Breaking the \(O(n \log n) \) barrier by abusing the synchronous model
 - For both uniform and non-uniform systems
- Leader election in arbitrary topologies
 - Using simultaneous DFS traversals

Asynchronous model: simple algorithm

Upon receiving no message:
\[
\text{send } \text{my_id} \text{ in clockwise direction}
\]

Upon receiving "m"
\[
\text{case}
\begin{align*}
\text{m_id} &< \text{my_id}: \text{send } m \text{ in clockwise direction} \\
\text{m_id} &> \text{my_id}: \text{discard } m \\
\text{m_id} &= \text{my_id}: \\
&\quad \text{leader} = \text{my_id} \\
&\quad \text{send } \langle \text{terminate, my_id} \rangle \text{ in clockwise direction} \\
&\quad \text{terminate}
\end{align*}
\]

Upon receiving \(\langle \text{terminate, id} \rangle \):
\[
\text{leader} = \text{id}; \\
\text{send } \langle \text{terminate, id} \rangle \text{ in clockwise direction} \\
\text{terminate}
\]
Complexity

- Time complexity: $O(n)$
- Message complexity:
 - Clearly less than n^2 messages are sent
 - And $\Omega(n^2)$ is sent in the following worst case scenario

Hirschenberg-Sinclair Algorithm

- For bidirectional, asynchronous rings: achieve a $O(n \log n)$ message complexity
- Each node operates in phases:
 - In each phase, nodes that are still active send out their uid in both directions
 - In phase k, the tokens travel a distance of 2^k and return back to their points of origin
 - A token might not make it back if it encounters a node with lower uid
 - A node makes it to the next phase only if it receives its tokens back from the previous round
Detailed Description

Upon receiving no message
if asleep then
 asleep = false
 phase = 0
 send [my-id, out, 1] to left and right

Upon receiving [id, out, h] from left:
Case
 id < my-id and h > 1: send [id, out, h-1] to right
 id < my-id and h==1: send [id, in, -] to left
 id = my-id: leader = my-id

Upon receiving [my-id, in, -] from left and right:
 phase = phase + 1
 send [my-id, out, 2^phase] to left and right

Upon receiving [not-my-id, in, -] from left or right:
 send [not-my-id, in, -] to right or left

Correctness

- Messages from node with lower id is never discarded
- Messages from nodes with higher id eventually reach the node with the lowest id and gets discarded
- Therefore the correct leader is elected (safety)
- Liveness: eventually the node with the lowest id reaches phase log(n) and sends its id throughout the entire ring
Communication Complexity

- In phase 0, every processor sends a message:
 - Maximum of 4n messages

- In phase k+1:
 - Only processors that send tokens are those that “won” in the previous phase
 - There is at most one winner for every $2^k + 1$ processors
 - Winners after phase k: $\frac{n}{2^k + 1}$
 - Tokens travel a distance in phase $k+1$ of: $2^{(k+1)}$
 - Total number of messages in phase $k+1$:
 $$4 \cdot 2^{(k+1)} \cdot \frac{n}{2^k + 1} < 16n$$
 - Total number of phases: $1 + \log n$
 - Number of messages: $O(n \log n)$

Question:

- What is the time complexity?
Lower bound

AW has a lower bound proof:
- Asynchronous networks require $O(n \log n)$ messages to perform leader election

Proof sketch:
- Provide a lower bound for a constrained leader election problem:
 - Elects the node with the minimum id
 - Everyone should know the identity of the winner
- Construct an “open schedule” for a ring:
 - Open schedule is not complete; it is a prefix of an admissible execution
 - Open execution corresponds to taking a ring, blocking one of its channels, but allowing all other events to proceed as normal

Lower bound (contd.)

AW prove the following:
- Every ring of size n, has an open schedule that sends at least the following number of messages $M(n)$
- When $n=2$, $M(n) = 1$ (easy to show)
- For higher n, $M(n) = 2 M(n/2) + \frac{1}{2} (n/2 - 1)$
 - Assume that an open schedule exists for $n/2$ sized rings
 - Then show that there is an open schedule for n-sized rings:
 - The two scenarios are not distinguishable

- Wait for the two rings to reach a quiescent state
- Show that a further $\frac{1}{2} (n/2 - 1)$ messages will be sent if one of the two channels is unblocked
Announcements

- Will post some “homework” questions on chapter 2 from AW
- Send me email if you are still looking for a partner

Synchronous rings

- Leader election with fewer than $O(n \log n)$ messages is possible
 - Can convey information by not sending a message:
 “if you do not hear from me, then assume that …”
- Assume that:
 - Uids are positive integers
 - Can be manipulated using arbitrary arithmetic operations
- Two algorithms: TimeSlice, VariableSpeeds
- TimeSlice:
 - n is known to all processors (non-uniform)
 - Unidirectional communication is sufficient
 - $O(n)$ messages
TimeSlice Algorithm

- Recall that a round in synchronous networks is:
 - Deliver all messages, have every processor take one compute step
- Define the notion of a phase
 - Each phase consists of “n” rounds
 - In phase k >= 0
 - If no one is elected yet
 - Processor with uid k:
 - Declares itself as the leader
 - Sends token with its uid around

- Message complexity: n
- Time complexity: n*(minimum uid value)

VariableSpeeds Algorithm

- Uniform algorithm: “n” is not known
- Unidirectional communication is sufficient
- Still achieves the O(n) messages bound
- Assumes there are two kinds of processors:
 - Those that are awake and participating in the leader election
 - Those that are non-participants and simply serve as relays
- Message life cycle:
 - A message is in phase one:
 - Until it is received by an awake processor
 - Forwarded immediately
 - A message is in phase two:
 - Once received by an awake processor
 - Forwarded after (2^message-uid – 1) rounds
Algorithm (contd.)

- When participant receives a message
 - If `message.id > my-uid` or the minimum message-id seen so far:
 - Swallow it
 - Else:
 - Delay for $2^{(message.id - 1)}$ rounds
- For a relay:
 - If `message.id > minimum message-id seen so far`, swallow it
 - Else, delay for $2^{(message.id - 1)}$ rounds
- If a processor gets its message back, it elects itself as the leader
- Correctness:
 - No processor will swallow the message with minimum uid
 - A message has to go through all processors before a leader is elected

Complexity

- By the time UID_{min} goes around the ring, the second smallest UID has gone only half way, third smallest a fourth of the way, etc.
- Forwarding the token carrying UID_{min} has caused more messages than all the other tokens combined

- Message complexity: $O(n)$
- Time complexity: $n \times 2^{UID_{\text{min}}}$
General Networks

What if a network has arbitrary topology?

Here is a simple algorithm based on DFS algorithm

- DFS algorithm from a specified root:
 - When a node first receives a message M
 - Send accept to sender
 - For each child:
 - Send M
 - Wait for accept or reject before considering next child
 - When a node later receives a message M
 - Send reject to sender

General networks (contd.)

- Start DFS spanning tree algorithm from all nodes
- In addition:
 - Send node’s uid along with M
 - When two DFS traversals collide, the copy with the lower uid wins
 - The other DFS stalls – no response is sent to the sender
 - The sender waits forever
 - Only the processor that has the minimum uid gets a response from all of its children
- Message complexity: $O(n \times m)$
- Time complexity: $O(m)$
- See text for details