Mutual Exclusion in Shared Memory

Arvind Krishnamurthy
Fall 2003

Shared Memory Model

- Two alternatives for concurrent systems to communicate:
 - Message passing
 - Shared memory

- Many issues to consider in choosing one of the two forms of communication:
 - Underlying hardware
 - Need for asynchronous interactions
 - Need for isolation (or fault-tolerance)
Attiya-Welch model

- Variables have a type:
 - determines what operations can be performed
 - Determines what values can be stored
- No channels
- Configuration: processor states and state of shared memory
- Only event type is a computation step
 - Processor's old state specifies what shared variable will be accessed and what operation will be performed
 - When operation is done:
 - Variable's value changes
 - Processor enters new state
- Admissible execution: every processor takes an infinite number of steps

Canonical Issue: Mutual Exclusion

- Assume that each processor is executing:
 - entry (synchronize to enter critical section code)
 - critical section code
 - exit
 - remaining non-critical code
- Mutual exclusion: at most one processor is executing critical section at any point
 - Assume: processor cannot be in critical section for ever
- Properties to enforce:
 - No deadlock: if a processor is in its entry section, then later some processor is in its critical section
 - No lockout: if a processor is in its entry section, then later the same processor is in its critical section
 - Bounded waiting: no lockout + while processor is waiting, others enter the critical section only a bounded number of times
Mutual Exclusion

- Main complexity measure of interest for shared memory mutual exclusion algorithms:
 - Number of shared variables
 - Size of each shared variable
- Influenced by:
 - How powerful is the type of the shared variables
 - How strong is the liveness condition to be satisfied
- We will consider two types of shared variables:
 - Weaker type: only reads and writes can be performed
 - Stronger types: allows for atomic read-modify-write

Mutual Exclusion Using Test-and-Set

- A test-and-set variable holds two values: 0 or 1
- Supports the following operations:
 - test&set(V):
    ```
    temp = V;
    V = 1;
    return temp;
    ```
 - reset(V):
    ```
    V = 0;
    ```
- Mutual exclusion using one test&set variable:
 - Entry: while (test&set(V) == 1);
 - Exit: reset(V);
- Guarantees mutual exclusion, no deadlock. Lockout possible
Mutual Exclusion using read-modify-write

- Read-modify-write variables: more powerful than test&set
- Supports the following general operation:
 - \(\text{RMW}(V, f) \):
 - \(\text{temp} = V \);
 - \(V = f(V) \);
 - return temp;

- Mutual exclusion using one RMW variable:
 - Conceptually, the list of waiting processors is stored in a circular queue of length “n”
 - Each waiting processor remembers in its local state:
 - Its location in the queue
 - Does not need a shared variable for this purpose

Mutual exclusion using RMW (contd.)

- Shared variable: “first”
- RMW variable: “last”

- Entering critical section:
 - \(f(V) = \text{increment } V \text{ modulo } n \);
 - Entry: \(\text{temp} = \text{RMW}(V, f); \text{ while (first != temp)} \);

- Exit critical section:
 - first++;
Analysis

- Satisfies properties:
 - Provides mutual exclusion
 - n-Bounded wait

- Space complexity:
 - Two shared variables: each \(O(\log n)\) bits wide
 - Different values these two variables can take: \(n^2\)

- Lower bound result:
 - If you want \(k\)-bounded waiting, then there must be at least \(n\) states of shared memory

Mutual Exclusion using Read/Write Variables

- Suppose that the shared variables are of read/write type:
 - Processors can atomically read or write each variable but not both

- Bakery algorithm for mutual exclusion:
 - Provides no-lockout property
 - Uses \(2n\) shared variables

- Variables:
 - \(\text{choosing}[i]\): initially 0, written by \(p_i\), read by others
 - \(\text{number}[i]\): initially 0, written by \(p_i\), read by others
 - No concurrent writes by two processors to the same variable
Bakery Algorithm

entry:
- `choosing[i] = 1;
- `number[i] = max(number[0], ... , number[n-1]) + 1;
- `choosing[i] = 0;
- for `j=0 to n-1 (except i) do:
 - wait until `choosing[j] == 0;
 - wait until `number[j] == 0 or
 - `(number[j], j) > (number[i], i);

exit:
- `number[i] = 0;

- `choosing[i]`: processor i is choosing a number
- `number[i] = 0` implies that processor i is in remainder code
- `number[i] != 0` implies that processor i is either in critical section or at the entry point

Analysis of Bakery Algorithm

- Useful to think of entry code to consist of:
 - Compute maximum + 1
 - Write my number
 - Wait till my number is lowest
- How does one prove that this provides mutual exclusion?
 - Will it still work if “choosing” is eliminated?
- Algorithm provides n-bounded waiting
- What drawbacks does this algorithm have?
Summary so far

- Special variables:
 - One test-and-set variable sufficient for mutual exclusion
 - But does not provide “no lockout” property
 - One read-modify-write variable + one shared variable sufficient to provide “no lockout + bounded-wait”

- Read-write variables:
 - Bakery algorithm: uses “n” read-write variables
 - Provides mutual-exclusion and bounded-wait
 - Counters could grow arbitrarily

- Today: read-write variables where values do not grow arbitrarily
 - Version 1: asymmetric two-processor code
 - Version 2: symmetric two-processor code
 - Version 3: symmetric n-processor code

Mutual exclusion for two processors

- Give priority to one processor:
 - First processor checks whether second processor has the lock
 - Second processor checks whether first processor has the lock or wants the lock

Processor 0
entry:
 want[0] = 1;
while (want[1]);
exit:
 want[0] = 0;

Processor 1
entry:
 want[1] = 0;
while (want[0]);
 want[1] = 1;
if (want[0]) goto entry;
exit:
 want[1] = 0;
Mutual Exclusion

- Suppose in contradiction that p0 and p1 are simultaneously critical
 - Which implies that want[0] = want[1] = 1
- The following sequence of actions might have occurred:

 P1 writes
 Want[1] = 1
 PO writes
 Want[0] = 1
 PO's last read
 of Want[1]
 Want[0] = 1
 Want[1] = 1

- Other possibility:

 PO writes
 Want[0] = 1
 P1 writes
 Want[1] = 1
 P1's last read
 of Want[0]
 Want[0] = 1
 Want[1] = 1

Mutual exclusion w/o bias

- Uses three binary shared variables:
 - Want[0] written by p0 and read by p1, initially 0
 - Want[1] written by p1 and read by p0, initially 0
 - Priority: written and read by both, initially 0

Processor 0

entry:
 want[0] = 0;
 while (want[1] && Priority == 1):
 want[0] = 1;
 if (Priority == 1)
 if (want[1]) goto entry;
 else
 while (want[1]);
 exit:
 Priority = 1;
 want[0] = 0;

Processor 1

entry:
 want[1] = 0;
 while (want[0] && Priority == 0):
 want[1] = 1;
 if (Priority == 0)
 if (want[0]) goto entry;
 else
 while (want[0]);
 exit:
 Priority = 0;
 want[1] = 0;
Correctness

- If one is performing “Enter” while the other does not have the lock and does not want the lock:
 - Trivially falls through

- If both processors “Enter” at the same time:
 - They see the same value of Priority
 - Correctness follows from the biased version

- If one is performing “Enter” while the other has the lock:
 - Assume processor 1 has the lock
 - Priority could be either 0 or 1
 - If Priority is 0, simply wait in the last while statement
 - If Priority is 1, wait in the first while loop and then fall into the second while loop, and eventually get the lock

Generalizing Mutual Exclusion

- How do you generalize to more than 2 processors?
Other Mutual Exclusion Results

- Lower bound on number of read-write variables required to provide mutual exclusion: $O(n)$

- Fast mutual exclusion algorithm:
 - Reads $O(1)$ variables if no contention
 - If contention, defaults to a traditional algorithm that reads $O(n)$ variables