Shared Memory Model

- Two alternatives for concurrent systems to communicate:
 - Message passing
 - Shared memory
- Many issues to consider in choosing one of the two forms of communication:
 - Underlying hardware
 - Need for asynchronous interactions
 - Need for isolation (or fault-tolerance)

Attiya-Welch model

- Variables have a type:
 - Determines what operations can be performed
 - Determines what values can be stored
- No channels
- Configuration: processor states and state of shared memory
- Only event type is a computation step
 - Processor’s old state specifies what shared variable will be accessed and what operation will be performed
 - When operation is done:
 - Variable’s value changes
 - Processor enters new state
- Admissible execution: every processor takes an infinite number of steps

Canonical Issue: Mutual Exclusion

- Assume that each processor is executing:
 - entry (synchronize to enter critical section code)
 - critical section code
 - exit remaining non-critical code
- Mutual exclusion: at most one processor is executing critical section at any point
 - Assumes: processor cannot be in critical section for ever
- Properties to enforce:
 - No deadlock: if a processor is in its entry section, then later some processor is in its critical section
 - No lockout: if a processor is in its entry section, then later the same processor is in its critical section
 - Bounded waiting: no lockout + while processor is waiting, others enter the critical section only a bounded number of times

Mutual Exclusion

- Main complexity measure of interest for shared memory mutual exclusion algorithms:
 - Number of shared variables
 - Size of each shared variable
 - Influenced by:
 - How powerful is the type of the shared variables
 - How strong is the liveness condition to be satisfied
- We will consider two types of shared variables:
 - Weaker type: only reads and writes can be performed
 - Stronger types: allows for atomic read-modify-write

Mutual Exclusion Using Test-and-Set

- A test-and-set variable holds two values: 0 or 1
- Supports the following operations:
 - test&set(V):
 - \(\text{temp} = V \)
 - \(V = 1 \)
 - return temp:
 - reset(V):
 - \(V = 0 \)
- Mutual exclusion using one test&set variable:
 - Entry: \(\text{while (test&set}(V) = 1) \)
 - Exit: \(\text{reset}(V) \)
- Guarantees mutual exclusion, no deadlock. Lockout possible
Mutual Exclusion using read-modify-write

- Read-modify-write variables: more powerful than test&set
- Supports the following general operation:

 \[\text{RMW}(V, f): \]

 \[
 \begin{align*}
 \text{temp} &= V; \\
 V &= f(V); \\
 \text{return} \text{ temp};
 \end{align*}
 \]

- Mutual exclusion using one RMW variable:
 - Conceptually, the list of waiting processors is stored in a circular queue of length \(n \)
 - Each waiting processor remembers in its local state:
 - Its location in the queue
 - Does not need a shared variable for this purpose

Mutual Exclusion using RMW (contd.)

- Entering critical section:

 \[
 f(V) = \text{increment } V \text{ modulo } n; \\
 \text{Entry: } \text{temp} = \text{RMW}(V, f); \text{ while (first } \neq \text{ temp);} \\
 \text{Exit critical section: } \\
 \text{first}++; \\
 \]

- Shared variable: “first”
- RMW variable: “last”

Analysis

- Satisfies properties:
 - Provides mutual exclusion
 - \(n \)-bounded wait

- Space complexity:
 - Two shared variables: each \(O(\log n) \) bits wide
 - Different values these two variables can take: \(n^2 \)

- Lower bound result:
 - If you want \(k \) bounded waiting, then there must be at least \(n \) states of shared memory

Mutual Exclusion using Read/Write Variables

- Suppose that the shared variables are of read/write type:
 - Processors can atomically read or write each variable but not both
- Bakery algorithm for mutual exclusion:
 - Provides no-lockout property
 - Uses \(2n \) shared variables

- Variables:
 - \(\text{choosing}[i] \): initially \(0 \), written by \(p_i \), read by others
 - \(\text{number}[i] \): initially \(0 \), written by \(p_i \), read by others
 - No concurrent writes by two processors to the same variable

Bakery Algorithm

```
entry:

\[
\begin{align*}
\text{choosing}[i] &= 1; \\
\text{number}[i] &= \max(\text{number}[0], \ldots, \text{number}[n-1]) + 1; \\
\text{choosing}[i] &= 0; \\
\text{for } j = 0 \text{ to } n-1 \text{ (except } i \text{) do:} \\
\text{wait until } \text{choosing}[j] = 0; \\
\text{wait until } \text{number}[j] = 0 \text{ or } \\
(\text{number}[j], j) > (\text{number}[i], i); \\
\text{exit:} \\
\text{number}[i] &= 0; \\
\end{align*}
\]
```

- \(\text{choosing}[i] \): processor \(i \) is choosing a number
- \(\text{number}[i] = 0 \) implies that processor \(i \) is in remainder code
- \(\text{number}[i] \neq 0 \) implies that processor \(i \) is either in critical section or at the entry point

Analysis of Bakery Algorithm

- Useful to thing of entry code to consist of:
 - Compute maximum + 1
 - Write my number
 - Wait till my number is lowest
- How does one prove that this provides mutual exclusion?
 - Will it still work if “choosing” is eliminated?

- Algorithm provides \(n \)-bounded waiting
- What drawbacks does this algorithm have?
Summary so far
- Special variables:
 - One test-and-set variable sufficient for mutual exclusion
 - But does not provide "no lockout" property
 - One read-modify-write variable + one shared variable sufficient to provide "no lockout + bounded-wait"
- Read-write variables:
 - Bakery algorithm: uses "n" read-write variables
 - Provides mutual-exclusion and bounded-wait
 - Counters could grow arbitrarily
- Today: read-write variables where values do not grow arbitrarily
 - Version 1: asymmetric two-processor code
 - Version 2: symmetric two-processor code
 - Version 3: symmetric n-processor code

Mutual exclusion for two processors
- Give priority to one processor:
 - First processor checks whether second processor has the lock
 - Second processor checks whether first processor has the lock or wants the lock

```plaintext
Processor 0
entry:
  want[0] = 1;
  while (want[1]):
    exit:
    want[0] = 0;

Processor 1
entry:
  want[1] = 0;
  while (want[0]):
    if (want[0]) goto entry;
    exit:
    want[1] = 0;
```

Mutual Exclusion
- Suppose in contradiction that p0 and p1 are simultaneously critical
 - Which implies that want[0] = want[1] = 1
 - The following sequence of actions might have occurred:
 - P1 writes Want[1] = 1
 - P0 writes Want[0] = 1
 - P0's last read of Want[1] = 1
 - Other possibility:
 - P0 writes Want[0] = 1
 - P1 writes Want[1] = 1
 - P1's last read of Want[0] = 1

Mutual exclusion w/o bias
- Uses three binary shared variables:
 - Want[0] written by p0 and read by p1, initially 0
 - Want[1] written by p1 and read by p0, initially 0
 - Priority: written and read by both, initially 0

```plaintext
Processor 0
entry:
  want[0] = 0;
  while (want[1] && Priority == 1);
  want[0] = 1;
  if (Priority == 1)
    if (want[1]) goto entry;
  else
    while (want[1]);
  exit:
  Priority = 1;
  want[0] = 0;

Processor 1
entry:
  want[1] = 0;
  while (want[0] && Priority == 0);
  want[1] = 1;
  if (Priority == 0)
    if (want[0]) goto entry;
  else
    while (want[0]);
  exit:
  Priority = 0;
  want[1] = 0;
```

Correctness
- If one is performing "Enter" while the other does not have the lock and does not want the lock
 - Trivially falls through
- If both processors "Enter" at the same time:
 - They see the same value of Priority
 - Correctness follows from the biased version
- If one is performing "Enter" while the other has the lock:
 - Assume processor 1 has the lock
 - Priority could be either 0 or 1
 - If Priority is 0, simply wait in the last while statement
 - If Priority is 1, wait in the first while loop and then fall into the second while loop, and eventually get the lock

Generalizing Mutual Exclusion
- How do you generalize to more than 2 processors?
Other Mutual Exclusion Results

- Lower bound on number of read-write variables required to provide mutual exclusion: $O(n)$

- Fast mutual exclusion algorithm:
 - Reads $O(1)$ variables if no contention
 - If contention, defaults to a traditional algorithm that reads $O(n)$ variables