Distributed Operating Systems

Firewalls

Dresden, 2007-06-13
Agenda

• Introduction
• What to protect? Where to intercept?
• Firewalls:
 – Packet filters
 – Application firewalls
• Firewall practices
 – Security/Network policies
 – NAT
• Further techniques
• Example: Setting up a simple scenario with iptables
Basic Idea

- Protect different networks from each other.

- A Firewall is a device that connects different networks and is configured to permit, deny or proxy data between those.

- Primary usage: The Internet
 - Protect your local network from the (evil) Internet
The most Secure Firewall?
The most Secure Firewall:
The Internet?

- Network of networks, interconnected, directly or indirectly.
How Does it Work?

- Each node on the Internet has a unique ID, the IPv4 address.
 - 32 bit
 - Notation: dotted decimals of 8 bits:
 - e.g. 141.76.2.1
How do Packets Travel Through the net?

- Netmask, associated to each IP address
 - Specifies which packets are transferred locally and which packets must be sent via the router
 - Example1: 141.76.2.1/24
 - 141.76.2.X are local, all others not
 - Example2: 192.168.5.37/28
 - 192.168.5.32-47 are local
A Router

- Also known as gateway
- Has multiple network interfaces
- Has multiple IP addresses
- Connects different networks
- Has a routing table that instructs where packets go
 - The big routers on the internet have tables with 100,000s of entries (using BGP)
- Can also be a firewall/packet filter
A Firewall

- Packet filters grant or deny network packets
- Application gateways grant or deny content
Sending Data

- TCP and UDP are the most common used protocols to send and receive data on the Internet.
- TCP/UDP are based on IP.
 - TCP: session based protocol, defines a stream between two nodes, preserves order, retransmission upon errors, checksums.
 - UDP: session-less protocol, no error correction, no retransmission etc.
- Both use 'ports' to distinguish services offered by hosts.
Services using TCP/UDP

Protocols built on top of TCP/UDP and their typical ports:

TCP:
- HTTP: 80
- HTTPS: 443
- SMTP: 25
- IMAP: 143
- IMAPS: 993
- SSH: 22

UDP:
- NTP: 123
- TFTP: 69
Where can Packets be Intercepted?

In a router (mostly).

But on which network level?
Possibilities:
• Data-link level (e.g. Ethernet)
• Network level (e.g. IP, ICMP)
• Transport level (e.g. TCP and UDP)
• above (e.g. HTTP)
Data-Link Level

- Example: Ethernet
- Packet type: Ethernet frames
- Device: Ethernet-Switch (or PC)
- Filter for:
 - Source and destination MAC addresses
 - Might also inspect packets and filter IP, ARP, VLAN and other protocols

Transparent firewall
Network Level

- **Example**: IP
- **Packet type**: IP packets
- **Device**: Router (or PC)
- **Filter for**:
 - Source and destination IP addresses
Transport Level

- Example: TCP/UDP
- Device: Router (or PC)
- Filter for:
 - Source and destination addresses and ports
 - TCP flags

That's what most packet filters implement.
Basic Rules

Allow SMTP from everywhere to mail server
Allow SSH from within faculty net to web server

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SRC IP</th>
<th>PORT</th>
<th>DEST IP</th>
<th>PORT</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>*</td>
<td>*</td>
<td>141.76.2.1</td>
<td>25</td>
<td>allow</td>
</tr>
<tr>
<td>tcp</td>
<td>141.76.0.0/17</td>
<td>*</td>
<td>141.76.2.31</td>
<td>22</td>
<td>allow</td>
</tr>
</tbody>
</table>

The rules only cover one way, what about the reply?
Handling the Reply

The node initiating the connection will use a local (arbitrary) port number, e.g.:

- `client:48230 → firewall → server:80`

The server will reply by sending to port 48230 on the client

Consequence, as the local port numbers are undefined:

- Firewall needs to have a rule like:

```
TYPE SRC IP PORT DEST IP PORT ACTION
tcp server 80 * >1023 allow
```

Which basically means the internal network is (half) open from outside.
Stateful Filtering

- TCP is a session based protocol
 - multiple TCP packets belong to a TCP stream
- A firewall can detect those!
- Opening connections from outside is not needed
 - this is essential
- The firewall can bypass filter rules if it identifies that a packet belongs to an already existing connection
 - faster
- Also possible for UDP, only open a specific (client:port → server:port) connection
- Close connection with timeout
Special Protocols

Example FTP:

- FTP in active mode uses two connections, a control connection and a data connection, the data connection is initiated from the server(!)
 - Firewall needs to understand the FTP protocol to support active FTP
 - passive FTP available as well
Application Gateways

- 'Firewalls' on the upper levels
- Content filtering
- Analyze content (data) that is being sent via TCP/UDP connections
- Usually referred to as “Proxy”
- Examples:
 - Web-Proxy (HTTP/HTTPS)
 - Mail (SMTP)
Web-Proxy

- between the web-browser (client) and the web-server
- can be configured by clients
 - Your ISP might provide a web-proxy
- can be transparent, i.e. all clients must use the proxy
 - the case in most (bigger) companies
- Used for:
 - Caching (avoid redownloading content from the net)
 - Logging/filtering/modifying/blocking of browsed URLs and/or content
SMTP-Proxy

- Mail is usually filtered to protect against:
 - SPAM and
 - Viruses and other malicious software/content
- Methods:
 - Tag mail, client/user decides
 - Cut out unwanted content
 - Reject
Firewall Practices

- Concentrate on IP, TCP/UDP firewall
- Vulnerabilities?
 - One client
 - Network with router
- Network Address Translation (NAT)
- Methods:
 - White-list
 - Black-list
Single Client

- Block ports from outside connections if there are open services
 - BUT: don't open them → no need to block them
 - is good second line of defence
- You may want to give certain hosts/network access to specific services
 - using an IP filter is one way of doing so
Protecting a Network

• Types of Networks:
 – Internal hosts use routed IP addresses
 • Internal hosts can be connected from outside
 – Internal hosts use a private IP space (not routed)
 • Only the router has an official IP
Network with Routed IPs

- External hosts can connect to every single host inside the network
 - Firewall on the Router can prevent this
- Internal to external traffic can also be controlled
Network with Private IP Space

- Private IPs are not routed by public routers
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
- Only the router has a public IP, internal hosts do not need to have public IPs
- Router must translate IP addresses from internal hosts to its own address and translate back responses from hosts on the net
 - Network Address Translation — NAT
Network Address Translation (NAT)

- With NAT on the router
 - Internal hosts cannot be addressed from outside
 - Internal hosts are hidden to outside (can be tracked with some effort)
 - Security feature!
- Routers can usually be configured to pass a connection to a specific port through to some internal host
Typical NAT Setup

- Router translates IPs
- Internal host cannot be directly reached
IPv6 and NAT

- NAT was/is primarily used to save IP addresses
 - Typical home setup: People have multiple devices on their DSL line (PCs, notebooks, PDAs, fridges, ...)
- IPv6 has plenty of them for everyone
- But is it good to let everyone connect to your internal hosts? We do have firewalls anyway?! What about privacy of internal hosts?
 - IPv6 has a privacy feature...
How to do the Rules?

To build a firewall, one needs to specify rules of connections that are allowed or dis-allowed to connect

Two main methods:
- Black list
- White list
Black list

- Default: Open everything, no blocking
- Block only hosts and/or ports that seem necessary

- Not recommended
 - easy to miss something
 - newly opened ports are open to outsiders (and forgotten)
White list

- Default: close everything from outside
- Only open services that are necessary

- Recommended
 - Internal are free to do what they want
 - Internal hosts cannot offer new services without having a hole in the firewall
Firewalling Internal Traffic

- Most (bigger) companies
 - Redirecting HTTP(S) to web-proxies
 - close everything else
 - Getting an SSH to outside is often hard
- closing the SMTP port for certain machines might be good to prevent viruses etc. to spread more
- otherwise usually no restrictions
Firewall Setups

There are several possible setups a firewall can be part of.

Single host:
Simple Network

Typical home setup:
- Router+Switch connects multiple hosts with the Internet
Multi-Level Setups

Separate and protect public services and the internal network.
DMZ – demilitarized zone
Perimeter network
Company Networks
Further Techniques

- Intrusion Detection Systems (IDS) and Prevention Systems (IPS)
- Port Knocking
Intrustion Detection and Prevention

- Detect 'malicious' behaviour:
 - port scanning
 - DoS attacks
 - matching signatures
 - 'unusual' behaviour
- IDS: Alert
- IPS: Do something:
 - Block connections
 - Rate-Limit connections
 - ...
Port Knocking

- Selectively open ports for a specific host
- Client 'knocks' on the firewall by connecting to closed ports with a predefined sequence
- Firewall detects this sequence and opens port(s) for the client
- Mostly used for SSH access
- May use crypto techniques in sequences
- Hides offered services
- Voids brute force account cracking attacks
Example: Firewall with Linux iptables

Scenario:

- Small network with one router including a firewall configuration
- The network has a web-Server and a mail server offering SMTP, SSMTMP, IMAPS and POP3S
- SSH to the router and mail server is allowed
- All other ports are closed
- Internal clients have no restrictions
- Log every denied packet
iptables

- In Linux, the packet filter sub-system is called 'netfilter'
- The basic configuration tools are 'iptables' and ip6tables' for IPv4 and IPv6 configuration
- iptables defines chains which consist of rules, rules contain other chains that are taken when a rule matches
- Main special chains:
 - INPUT, FORWARD, OUTPUT and ACCEPT, DROP, REJECT
iptables chains

- **INPUT**: incoming traffic for the local host
- **OUTPUT**: traffic generated by the local host
- **FORWARD**: forwarded traffic
- **ACCEPT**: accept the packet
- **DROP**: just drop
- **REJECT**: reject the packet by sending an ICMP message to the sender
Network Interfaces

The router has two physical network interfaces:

- `ethi` — connected with the internal network
- `ethe` — connected with the external/public network
IP addresses

To configure the firewall, we need to know the IP network and names/IP addresses of the host offering services:

- Network: 141.76.20.0/24
- Webserver: 141.76.20.9
- Mail-Server: 141.76.20.11
Example

Initialisation
flush all rules and chains
dropall chains and rules
`iptables -F`
`iptables -X`
select default policies
`iptables -P INPUT DROP`
`iptables -P FORWARD DROP`
`iptables -P OUTPUT DROP`
Example

allow connection we already know
iptables -A INPUT -j ACCEPT -m state
 --state ESTABLISHED,RELATED
iptables -A FORWARD -j ACCEPT -m state
 --state ESTABLISHED,RELATED
Example – SSH

allow SSH to the router from everywhere
iptables -A INPUT -j ACCEPT -p tcp --dport 22

allow SSH to the mail server
iptables -A FORWARD -j ACCEPT -p tcp \
 -d 141.76.20.11 --dport 22
Sanity – localhost and block invalid IPs

allow localhost communication
iptables -A INPUT -j ACCEPT -i lo
iptables -A OUTPUT -j ACCEPT -o lo

skip private nets (can also be done with routing)
for n in 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16; do
 iptables -A INPUT -s $n -j DROP
 iptables -A FORWARD -s $n -j DROP
 iptables -A OUTPUT -s $n -j DROP
done
Internal Servers

Mail Server
iptables -A FORWARD -j ACCEPT -p tcp \
 -d 141.76.20.11 -m multiport \
 --dport smtp,sssmtp,imaps,pop3s

Web server
iptables -A FORWARD -j ACCEPT -p tcp \
 -d 141.76.20.9 -m multiport --dport http,https
Example

allow every packet from internal interface to proceed
iptables -A FORWARD -j ACCEPT -i ethi -o ethe

log everything what's left
iptables -A INPUT -j LOG
iptables -A FORWARD -j LOG
Next week

Two exercises on locks and firewalls.