Basics of Deadlock Theory

Deadlocks

- deadlock occurs when there is a set of processes which have outstanding requests for resources that can never be satisfied
- starvation occurs when there are processes waiting for resources that become available and never get assigned to them
- the wait-for-graph (WFG) is a graph with
 - nodes representing processes
 - edges p --> q if process p waits for a resource held by process q
- in studying deadlocks both processes, resources, resource types and accesses, and types of requests need to be considered
Necessary conditions for deadlocks

- Four general conditions are necessary for deadlock to occur
 - exclusive access resources
 - hold and wait
 - no preemption
 - circular wait
- these conditions are not sufficient

Deadlock Handling Strategies

- prevention
 - grant resource requests so that one of the necessary conditions does not hold
- detection & recovery
 - examine resource allocation and pending requests and test for deadlock; if present, recover by aborting some deadlocked processes
- avoidance
 - grant resource requests as long as the system remains in a safe state after resources are allocated
Deadlock Models

- Single-unit requests
- AND-requests
 - process requests multiple resources and stays blocked until all are satisfied
 - cycles in WFG are sufficient for deadlock
- OR-requests
 - process requests multiple resources and stays blocked until any one of them is satisfied
 - cycles in WFG are not sufficient for deadlock; knots are
- AND-OR requests
- P-out-of-Q requests

Resource Types & Accesses

- Reusable resources
 - resource does not “change” when assigned/released to/by processes
 - a resource allocated to one processes P can be allocated to another process after P releases that resource
 - typical reusable resources: CPU, disk, etc
- Consumable resources
 - resource changes (ceases to exist) after is assigned to a process
 - typical consumable resources: messages, signals, semaphore operations
- Resources can be accessed in exclusive or shared mode
Graph-Model for System State

- General resource system consists of
 - a set of processes P_1, P_2, \ldots, P_n
 - a set of resources (Reusable & Consumable) R_1, R_2, \ldots, R_m with
 - t_i, available units for reusable resource R_i
 - Q_i, a set of producer processes for consumable resource R_i

- General resource graph G models system state
 - Bipartite graph with nodes the processes and resources
 - An available units vector $r = (r_1, r_2, \ldots, r_m)$ for all resources
 - Request edges: (P, R) if P requests 1 unit of R
 - Assignment edges: (R, P) if 1 unit of R (reusable) is assigned to P
 - Producer edges: (R, P) if P is producer of consumable R

Example General Resource Graph

![Example General Resource Graph](image)
General resource graph

- **Must satisfy the following conditions**
 - for each reusable resource R_i
 - total assigned units of $R_i \leq$ initial number of units of R_i
 - available units of $R_i = \text{initial units of } R_i - \text{total assigned units of } R_i$
 - for each process P_j
 - assigned units of R_i to P_j + requested units of R_i by $P_j \leq \text{ri}$
 - for each consumable resource
 - the producer edges are proper
 - available units ≥ 0

- **Process operations and effects on general resource graph**
 - request
 - acquisition
 - release

Example graph

![Example graph](image-url)
P1 requests two units of R1

P1 acquires one unit of R2
P2 acquires one unit of R1

P2 releases three units of R2
Graph Reductions

- Reducing general resource graph G by an unblocked process P_i
 - for each reusable resource:
 - delete all assignment and request edges
 - for each assignment edge for a reusable resource increment the number of available units for that resource
 - for each consumable resource:
 - delete all assignment, request, and producer edges
 - set available units for that resource to infinity
- A process is *blocked* iff for some resource(s) the number of requested units is more than the available units of that resource

P2 releases one unit of R1

![Diagram showing resource allocation](image)
Graph Reductions & Deadlocks

- **G is completely reducible** iff there exists a sequence of reductions that removes all edges from G.

 Theorem. Pi is not deadlocked if there exists a sequence of reductions that takes the system in state where Pi is not blocked.

 Theorem. if G is completely reducible then G is deadlock free.

- Graph G is **expedient** if all processes with outstanding requests are blocked.

Cycles, Knots, & Deadlocks

- A **knot** in a graph G is a set K with at least two nodes such that
 - the restriction of G to K is strongly connected
 - there are no nodes in G-K reachable from K

 Useful fact: If a graph does not have a knot then there exists a path from every node to a sink node.
Cycles, Knots, & Deadlocks

- **Theorem.** In a general resource graph G
 - a cycle is necessary for deadlocks
 - a knot is sufficient for a deadlock provided G is expeditent

 Prove it!!

- **Theorem.** For any process P_i in an expeditent G, if there is no path from P_i to a sink then P_i belongs to a knot in G and P_i is deadlocked

Knots are not necessary for deadlock

![Diagram showing cycles and knots in a resource graph]

- Diagram illustrating cycles and knots in a resource graph.
Single-Unit Systems

Consider a general resource graph G for

- a system where processes can request 1 unit of a resource at a time
 - **Theorem.** If G is expedient then a knot is necessary and sufficient condition for a deadlock.

- a system with single-unit reusable resources only
 - **Theorem.** If G is expedient then a cycle is necessary and sufficient for a deadlock.

Efficient deadlock detection algorithms are possible

System with only Reusable Resources

Consider resource graph G

- **Theorem.** All reduction sequences applied to G result in the same state (graph) G'.

- **Corollary.** G is deadlock free if and only if G is completely reducible.

Efficient deadlock detection algorithms are possible
System with only Consumable Resources

- **Theorem.** If G’s claim-limited graph is completely reducible then G is deadlock-free

- Note that a system state may be deadlock free even though its claim-limited graph is not completely reducible

System with only Consumable Resources

- Difficult to efficiently detect deadlocks
 - a knot is not necessary for a deadlock to occur
 - different reduction sequences lead into different states

- Can test whether a system is deadlock free using the
 - **claim-limited graph**
 - A general resource graph which corresponds to the worst-case system state
 - the claim-limited graph for a system is constructed by
 - making each consumable resource have zero available units
 - having a request edge (P,R) iff P is a consumer of R
Deadlock Prevention Methods

- Grant resource requests in such a way such that one or more of the four necessary conditions for deadlock do not hold
 - process begins only if all its requested resources can be granted
 - blocked processes release resources they hold to other active (higher priority) processes requesting them
 - processes request resources according to a resource priority ordering

Deadlock Avoidance

- Assumption: Maximum resource requirements of all processes are known at all times
 - A state is *safe* if there exists a serial process execution sequence where all processes complete
 - Banker’s algorithm for deadlock avoidance
Banker’s Algorithm

Maintain
- **A**: maximum available units (row) vector
- **B**: maximum claim matrix
 one row vector Bi per process Pi denoting maximum resource units ever to be requested by Pi
- **C**: allocation matrix
 one row vector Ci per process Pi denoting resource units allocated to Pi
- **D**: available matrix
 \[D = A - \text{sum}(C_i, i=1..n) \]
- **E**: need matrix
 \[E = B - C \]

Correctness conditions
- **Bi <= A** (claim units <= available units)
- **C <= B** (allocated units <= claim units)
- **D >= 0** (total allocated units <= available units)

Pi requests/releases resources with a vector \(\text{Fi <= Ei} \)
- if Pi releases resources \(\text{Fi} \) then
 \[D = D + \text{Fi} \]
 \[C_i = C_i + \text{Fi} \]
 \[E_i = E_i - \text{Fi} \]
- if Pi requests resources \(\text{Fi} \) then
 if \(\text{Fi} > D \) then block Pi
 else test safety of \(\text{Fi} \) and grant or deny its request depending on whether the resulting system state will be safe or not
Testing Safety of a System State given a request

- Initially, label all processes unfinished
- Conditionally grant request F_i of P_i

 $D = D - F_i$
 $C_i = C_i + F_i$
 $E_i = E_i - F_i$

 While there exists an unfinished P_i such that $E_i \leq D$
 - $D = D + C_i$
 - label P_i as finished
- If all processes are labeled finished then state is safe and the request is granted
- else state is not safe
 - undo all changes to D and process labels due to the while loop
 - undo changes due to conditional granting of F_i
 - deny request and block P_i

Pros and Cons of Approaches

- Prevention (conservative)
 - unnecessary pre-emptions, restricts concurrency, limits resource utilization
- avoidance (eager pessimistic)
 - unnecessary denials, a priori knowledge of resource needs
 - no process aborts
- detection (lazy optimistic)
 - overhead for detection algorithm
 - process aborts and rollbacks
 - maximum concurrency, flexibility, no prior knowledge is needed
Reading

- Chapter 3 of Singhal & Shivaratri
- R.C. Holt, “Some deadlock properties of computer systems”,